

#ThaiNOG

Extending VXLAN EVPN to the Campus and Data Center Interconnect (DCI)

THERDTOON Theerasasana ttheera@cisco.com

May 2022

Rev.1

Agenda

- VXLAN and EVPN Overview
- VXLAN EVPN for Campus
- Data Center Interconnect (DCI) using VXLAN EVPN

Data Center "Fabric" Journey

Why VXLAN Overlay

Customer Needs	VXLAN Delivered	
Any workload anywhere – VLANs limited by L3 boundaries	Any Workload anywhere- across Layer 3 boundaries	
VM Mobility	Seamless VM Mobility	
Scale above 4k Segments (VLAN limitation)	Scale up to 16M segments	
Efficient use of bandwidth	Leverages ECMP for optimal path usage over the transport network	
Secure Multi-tenancy	Traffic & Address Isolation	

VXLAN and EVPN

VXLAN

- Standards based Encapsulation
 - RFC 7348
 - Uses UDP-Encapsulation
- Transport Independent
 - Layer-3 Transport (Underlay)
- Flexible Namespace
 - 24-bit field (VNID) provides ~16M unique identifier
 - Allows Segmentations

EVPN

- Standards based Control-Plane
 - RFC 7432
 - Uses Multiprotocol BGP
- Uses Various Data-Planes
 - VXLAN (EVPN-Overlay), MPLS,
 Provider Backbone (PBB)
- Many Use-Cases Covered
 - Bridging, MAC Mobility, First-Hop & Prefix Routing, Multi-Tenancy (VPN)

Ethernet VPN (EVPN)

MPLS (RFC 7432) Provider Backbone Bridges (RFC 7623)

Overlay (NVO3) (RFC 8365)

- EVPN over NVO Tunnels (i.e. VXLAN) for Data
- Provides Layer-2 and Layer-3 Overlay Service over Center Fabric Encapsulation
- simple IP Network

EVPN - Host and Subnet Route Distribution

Host Route Distribution decoupled from the Underlay protocol

- Use MultiProtocol-BGP (MP-BGP) on the Leaf nodes to distribute internal Host/Subnet Routes and external reachability information
- Route-Reflectors (RR) deployed for scaling purposes

EVPN Control Plane - Host and Subnet Routes

- BGP EVPN NLRI*
- Host MAC (Route Type 2)
 - MAC only, Single VNI, Single Route Target
- Host MAC+IP (Route Type 2)
 - MAC and IP, Two VNI, Two Route Target, Router MAC
- Internal and External Subnet Prefixes (Route Type 5)
 - IP Subnet Prefix, Single VNI, Single Route Target

*NLRI: Network Layer Reachability Information (BGP Update Format

Distributed IP Anycast Gateway

- Distributed First-Hop Routing on Edge Device
 - All Edge Device share same Gateway
 IP and MAC address
 - Pervasive Gateway approach
- Gateway is always active
 - No redundancy protocol for hello or state exchange
- Distributed and smaller state
 - Only local End-Points ARP entries

EVPN Requirements & Drivers

Requirements	Drivers
Industry-standard	Multi-vendor IT strategy
One Fabric Architecture	Unified operation across - Campus DC WAN
Proven and Scalable	BGP Protocol History. Minimum new learning curve
Hierarchical Fabric Domain	Multi-tier Overlay network architecture
Flexible Overlay	Use-case driven customize Overlay networks Types and Topologies

BGP EVPN Drivers in Enterprise

Network Extension

- Bridge connection between across Core network
- User devices are virtually in common L2 segment
- Logical topologies with deterministic overlay Layer 2 network infrastructure.

Network Segmentation

- Routed connection at first-hop gateway
- User devices are segmented across Core network
- Logical overlay IP routed network providing flexible topology support

VXLAN BGP EVPN Solution

End-to-End Design and Interoperability

EVPN

External Handoff

#ThaiNOG

© 2022 Cisco and/or its affiliates. All rights reserved. Cisco Public

BGP EVPN Inter-Domain Routing

Single Site - Inter-domain EVPN fabric Hierarchical control-plane for better

Spine and Leaf BGP peering in

separate domain

scale

Spine-to-Spine BGP Peering

EVPN prefix exchange Next-Hop-

Unchanged

Extended Segmented

BGP EVPN Peers

L3VNI - Network Segmentation and Routing

Routing

- First-Hop Distributed Gateway at Access
- Access Network policy enforcement point
- Network address routing across fabric
- Data plane segmentation thru VXLAN
- Pv4 / v6 support

Distributed AnyCast Gateway

Routing + Bridging

- First-Hop Distributed Anycast Gateway at Access
- Bridge in same VLAN across Leaf's in fabric
- Route locally based on local routing policy
- Access Network policy enforcement point
- Host + Network address routing across fabric
- Data plane segmentation thru VXLAN
- IPv4 / v6 support

Centralized Gateway

Routing + Bridging

- Multi-Hop Centralized Gateway
- Bridge in same VLAN across Leaf's in fabric
- Route remotely based on remote routing policy
- Access Network policy enforcement point
- Host address routing across fabric
- Data plane segmentation thru VXLAN
- IPv4 / v6 support

Layer 2 Network Extensions

L2 – Hub-n-Spoke Network Extension

Bridging

- IP Gateway beyond EVPN fabric
- Border L2 Leaf Hub. Layer 2 Leaf Spokes.
- Point-to-Point L2VNIs to Hub
- Route outside fabric based on remote routing policy
- Access Network policy enforcement point
- Host address routing across fabric
- Data plane segmentation thru VXLAN
- IPv4 / v6 support

Tenant Routed Multicast Architecture

- TRM enables Multicast over VXLAN enabled network for Layer 3 network segments.
- Integrated PIM RP and PIM-SM in Underlay support enables fabric-enabled source and receivers Multicast forwarding topologies.
- VTEP provides integrated PIM RP function

Wireless Integration in EVPN Networks

- Transparent Wireless network integration into BGP EVPN fabric network
- Underlay CAPWAP communication between AP and WLC. User Policy enforcement maintains at WLC.
- VTEP in Wireless aggregation can overlay network traffic based on routing policy.

VXLAN QoS Management

- Trust-Boundary and policy enforcement at network edge.
- Per-hop Underlay QoS policy provides differentiated service treatment for combined underlay and overlay traffic class
- QoS policy and marking at Border supports default or user-defined policy with interworking external network domain

VXLAN Aware Flexible NetFlow

- Supports v4 and v6 protocols
- Bi-directional flow detection over the NVE interface

Flow record fields	Packet data
Source Address	10.1.1.11
Destination Address	20.1.1.200
Source Port	47321
Destination Port	80
IP Protocol	6
TCP Flags	0x1A
Source SGT	0
Interface	nve10
Flow direction	input
VNID	6000
VXLAN Flags	1
VXLAN SRC VTEP	1.1.1.1
VXLAN DST VTEP	2.1.1.1

VXLAN Evolves as the Control Plane Evolves!

Before Yesterday

Yet Another Encapsulation

- Flood & Learn (Multid
- Data-Plane only

Yesterday

VXLAN for the Data Center - Intra-DC

- Control-Plane
- Active VTEP Discove

Today

Multicast and Unicas VXLAN for DCI - Inter-DC

- DCI Ready
- ARP/ND caching/suppress
- Multi-Homing
- Failure Domain Isolation
- **Loop Protection**

Multi-Pod End-to-End Encapsulation

Multi-Pod Characteristics - "The Single"

- Single Overlay Domain End-to-End Encapsulation
- Single Overlay Control-Plane Domain End-to-End EVPN Updates
- Single Underlay Domain End-to-End
- Single Replication Domain for BUM
- Single VNI Administrative Domain

Building Underlay Hierarchies - Non Hierarchical Overlay

The Ugly Multi-Pod Truth What about the Required VXI AN Tu

Tunnel adjacencies

N * (N-1)

What about the Required VXLAN Tunnel Adjacencies?

VXLAN Multi-Site Hierarchical Overlay Domains

VXLAN Multi-Site Characteristics – "The Multiple"

- Multiple Overlay Domains Interconnected & Controlled
- Multiple Overlay Control-Plane Domains Interconnected & Controlled
- Multiple Underlay Domains Isolated
- Multiple Replication Domains for BUM Interconnected & Controlled
- Multiple VNI Administrative Domains Downstream VNI

Underlay Isolation - Overlay Hierarchies

The Multi-Site Truth

What about the Required VXLAN Tunnel Adjacencies?

Tunnel adjacencies $\frac{N*(N-1)}{2}$

VXLAN Multi-Site Functional Components

VXLAN Multi-Site Main Use Cases

Scale-Up Model to Build a Large Intra-DC Network

Data Center Interconnect (DCI)

Integration with Legacy Networks (Coexistence and/or Migration)

VXLAN Multi-Site Underlay Isolation

VXLAN Multi-Site Site-External D

Inter-Site Network Routing Table Border Site1: Border Site2: 10.1.1.101 10.2.2.101 10.1.1.102 10.2.2.102 10.1.1.111 10.2.2.222

VXLAN Multi-Site Border Gateway

VXLAN Multi-Site Tunnel Adjacencies

Thai Network Operators Group

BGW-to-Cloud

BGWs between Spine and Super-Spine

BGWs on Spine

BGWs Back-to-Back

VXLAN Multi-Site Overlay Control Plane (L3 Core)

VXLAN Multi-Site Overlay Control Plane

VXLAN Multi-Site Overlay Control Plane (Site 1)

VXLAN Multi-Site Overlay Control Plane (Site 2)

VXLAN Multi-Site Overlay Control Plane (DCI)

Legacy Site Integration

VXLAN Multi-Site with vPC BGWs

Migration/Coexistence Use Case

- Coexistence and/or migration use cases
 - Need to extend Layer-2 and Layer-3 multi-tenant connectivity across sites
- Deploy a pair of vPC BGWs in the legacy site
 - Seamless connectivity extension via VXLAN
 - · Leveraging native Multi-Site functions (Ingress Replication for BUM, BUM containment, etc.)

VXLAN Multi-Site with vPC BGWs Next-Gen DCI to Interconnect Legacy Networks

- A pair of vPC BGWs inserted in each legacy site to extend Layer-2 and Layer-3 connectivity between sites
 - Replacement of traditional DCI technologies (EoMPLS, VPLS, OTV, ...)
- Provides the option of slowing phasing out the legacy networks and replace them with modern VXLAN EVPN fabrics

VXLAN Multi-Site with vPC BGWs Next-Gen DCI Use Case with Back-to-Back BGWs

- Typical topology leveraging dedicated dark fiber links or DWDM circuits
- 'Squared' and 'full mesh' topologies are both fully supported
- Recommended to limit the back-to-back deployment to two sites
 - Recommended to insert Layer 3 core network with 3+ sites

Thank you

cisco

#ThaiNOG